An official website of the United States Government 
Here's how you know

Official websites use .gov

.gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( lock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

You have accessed part of a historical collection on defense.gov. Some of the information contained within may be outdated and links may not function. Please contact the DOD Webmaster with any questions.
Immediate Release

Space Development Agency Successfully Launches First Missions

The Space Development Agency today announced the successful launch of its first two satellite missions, Mandrake II and Laser Interconnect Networking Communications System (LINCS) and the Prototype On-orbit Experimental Testbed (POET) payload, on June 30 at Cape Canaveral Space Force Station, Fla.

The launch, supported by SpaceX’s Transporter 2, an all-rideshare Falcon 9 mission, carried aboard SDA’s first two sets of experimental satellites, designed and built with government and industry partners, to gather data on optical communication terminal (OCT) performance in low-Earth orbit (LEO), along with the POET payload to demonstrate on-orbit data fusion, proving out core capabilities required for SDA’s future development efforts.

Optical links between space, air, and ground assets offer significantly higher data rates and lower latency when compared to conventional radio frequency links, and demonstrate a pathway of getting real-time data to warfighter.

Once on-orbit, POET will demonstrate integration of a third-party multiple intelligence (multi-INT) data fusion software application in a LEO satellite modular and upgradeable mission software suite running in an edge-processor that is representative of what is planned for the National Defense Space Architecture’s (NDSA) Tranche 0 constellation.

“SDA is relying on OCTs to get massive amounts of data off of sensors and into warfighters' hands faster than has ever been possible,” said Derek Tournear, SDA director. “Today’s missions will provide real-world data that we can use to verify our engineering assumptions and space-qualify a significant emerging technology.” He continued, “The lessons learned from on-orbit experiments and tests will directly impact future SDA missions, in line with our spiral development concept.”

On Mandrake II, SDA is working with government partners DARPA and Air Force Research Laboratory to evaluate the pointing, acquisition, and tracking algorithms that allow for OCTs to establish and maintain high-speed communication links. The mission will also characterize data transfer rates and optical link performance between space vehicles in LEO and from space to ground. Immediately after separation from the launch vehicle, the pair of Mandrake II space vehicles will gradually drift apart on orbit, allowing for tests at increasing ranges up to 2,400 kilometers.

For the LINCS mission, SDA teamed with General Atomics (GA) to collect the same general data as the Mandrake II mission with OCTs designed and manufactured by GA that offer increased performance. SDA and GA will also take this technology a step further by demonstrating space-to-air optical links between a LINCS space vehicle and a specially developed OCT pod for the MQ-9 Reaper unmanned aerial vehicle. In addition to increasing bandwidth, optical links are also more difficult to detect and disrupt than traditional communication links, enhancing communication in less- and non-permissive environments.

The POET program will provide for an on-orbit Custody Layer data fusion application that will reside within an overarching Battle Management Command, Control, and Communications (BMC3) software system developed for the Defense Advanced Research Projects Agency (DARPA’s) Blackjack Pit Boss processor. The Small Business Innovation Research (SBIR) Phase II program includes developing a Custody layer application and software development kit using the Scientific Systems Company, Inc. (SSCI) collaborative mission autonomy software suite, (b) ground testing on a CFC-400 satellite processor, (c) host satellite integration, launch and checkout support; and (d) enables an initial flight demonstration of on-orbit multi-INT data fusion onboard Loft Orbital’s YAM-3 satellite.

SDA’s work to push the boundaries of OCT capabilities will directly impact warfighter readiness by disrupting and shortening the traditional sensor-to-shooter and sensor-to-weapon kill chain. With more data traveling faster than ever, leaders will have the tools to react to current and emerging threats with greater speed and assurance. As SDA continues to develop the National Defense Space Architecture (NDSA), smaller-scale development efforts like those launched during this mission will play a key role in ensuring that new technology is effectively implemented with each new tranche, solidifying the nation’s continued superiority in the space domain.

SDA recognizes the importance of continued partnership with government and industry to develop and demonstrate technologies to enhance the performance and resilience of the NDSA.

Parties interested in contributing to the NDSA are encouraged to review the Systems, Technologies, and Emerging Capabilities Broad Agency announcement and other competitive opportunities available on our website at https://www.sda.mil/opportunities/.

About the Space Development Agency. Recognized as DOD’s constructive disruptor for space acquisition, SDA will accelerate delivery of needed space-based capabilities to the joint warfighter to support terrestrial missions through development, fielding, and operation of the National Defense Space Architecture. For more information on SDA, contact OSD.SDA.Outreach@mail.mil or visit https://www.sda.mil.